Data-driven acceleration of thermal radiation transfer calculations with the dynamic mode decomposition and a sequential singular value decomposition

نویسندگان

چکیده

We present a method for accelerating discrete ordinates radiative transfer calculations transfer. Our works with nonlinear positivity fixes, in contrast to most acceleration schemes. The is based on the dynamic mode decomposition (DMD) and using sequence of rank-one updates compute singular value needed DMD. Using sequential allows us automatically determine number solution vectors include DMD acceleration. results slab geometry standard temperature linearization. Compared positive source iteration, our demonstrate that reduces transport sweeps required solve problem by factor about 3 diffusive Marshak wave problem, several thousand cooling where effective scattering ratio approaches unity, 20 improvement realistic, multimaterial radiating shock problem.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

پیشنهاد روش جدیدی برای محاسبه polynomial singular value decomposition ) psvd )

در این پایان نامه به معرفی روشهای مختلف محاسبه psvd می پردازیم. بخشی از این روشها به بررسی روشهای مختلف محاسبه psvd در مقالات مطالعه شده می پردازد که می توان به محاسبهpsvd با استفاده از الگوریتمهای pqrd و pevd و sbr2 و محاسبه psvd براساس تکنیک kogbetliantz و روش پارامتریک برای محاسبه psvd اشاره نمود. بخش بعدی نیز به بررسی روشهای مستقیم پیشنهادی محاسبه psvd برای ماتریسهای 2×2و2× n و n×2 و 3× n و...

15 صفحه اول

Data Reconciliation and the Singular Value Decomposition

− The steady state data reconciliation problem is approached via a geometrical picture of its model and measurement abstract spaces. By completely utilizing the structure of the problem constraint matrix, via its singular value decomposition (SVD), data adjustment is accomplished and redundancy and observability conditions are formulated. As an example, the method is applied to a small network ...

متن کامل

Singular Value Decomposition (SVD) and Generalized Singular Value Decomposition (GSVD)

The singular value decomposition (SVD) is a generalization of the eigen-decomposition which can be used to analyze rectangular matrices (the eigen-decomposition is definedonly for squaredmatrices). By analogy with the eigen-decomposition, which decomposes a matrix into two simple matrices, the main idea of the SVD is to decompose a rectangular matrix into three simple matrices: Two orthogonal m...

متن کامل

The Singular Value Decomposition

Carlo Tomasi Any m n matrix of rank r transforms the unit sphere in Rn into an r-dimensional hyperellipsoid in Rm. For instance, the rank-2 matrix A = 1 p2 264 p3 p3 3 3 1 1 375 (1) transforms the unit circle on the plane into an ellipse embedded in three-dimensional space. Figure 1 shows the map y = Ax : Two diametrically opposite points on the unit circle are mapped into the two endpoints of ...

متن کامل

Singular Value Decomposition and High-Dimensional Data

A data set with n measurements on p variables can be represented by an n × p data matrix X. In highdimensional settings where p is large, it is often desirable to work with a low-rank approximation to the data matrix. The most prevalent low-rank approximation is the singular value decomposition (SVD). Given X, an n × p data matrix, the SVD factorizes X as X = UDV ′, where U ∈ Rn×n and V ∈ Rp×p ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Computational Physics

سال: 2022

ISSN: ['1090-2716', '0021-9991']

DOI: https://doi.org/10.1016/j.jcp.2021.110756